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Si-dopedn-type AlLGa_,N alloys were grown by metalorganic chemical vapor deposition on
sapphire substrates. We have achieved highly condunttype AlL,Ga N alloys forx up to 0.7.

A conductivity (resistivity) value of 6.7Q71 cm ! (0.15Q cm) (with free electron concentration
2.1x10® cm 3 and mobility of 20 cn/Vs at room temperatuyehas been achieved for
Alg6:Ga 3N, as confirmed by Hall-effect measurements. Our experimental results also revealed
that (i) the conductivity of AJGa, _,N alloys continuously increases with an increase of Si doping
level for a fixed value of Al content an@) there exists a critical Si-dopant concentration of about
1x 10 cm™3 that is needed to convert insulating,Gla, _,N with high Al content =0.4) to
n-type. © 2002 American Institute of Physic§DOI: 10.1063/1.1492316

Currently, there is a great need of solid-state UV emittersdispersive x-ray microanalysis and x-ray diffraction mea-
for chem-bio-agent detections as well as for general lightingsurement as well as by the flow rates of TMGa and TMAIL.
In such applications based on IlI-nitride wide band gap semiThe Al contentsx) determined by all three methods agreed
conductors, highly conductive-type AlGaN alloys with  within =0.02. The Si-dopant concentrations were determined
high Al contents are indispensable., &k, _,N alloys with by the flow rate of Si{ as well as by the variable tempera-
high x are both very difficult to grow and to characterize dueture Hall-effect measurement at elevated temperatutes (
to their wide energy band gaps. Undoped@4d _,N alloys <650 K). Additionally, secondary ion mass spectroscopy
with high x (x>0.4) are generally insulatintf a fact thatis measurements were performéoly Charles and Evanfor
directly correlated with a sharp increase of the carrier localselective samples to verify the Si-dopant concentrations.
ization energy around x=0.43 Previously, n-type  Atomic force microscopy and scanning electron microscopy
AlL,Ga _«N (x up to 0.58 with a conductivity(resistivity) of ~ were employed to examine the surfaces and revealed crack-
about 0.08Q 'cm™ (13 Qcm) has been obtained by free Al,Ga _,N epilayers. Variable temperature Hall-effect
Si-doping® More recently, by employing indium-silicon (standard Van der Paywneasurements were employed to
codoping approach, am-type conductivity of about 5 measure the electron concentration, mobility, and resistivity
Q" lcm ! has been obtained for AlGa, (N epilayerss How-  of these materials. A deep UV (10 mW@ 195 nm) picosec-
ever, to obtain short wavelength emitters {300 nm), ond time-resolved photoluminescendPLl) spectroscopy
highly conductiven-type Al,Ga; _,N alloys with Al contents  system was specially designed to probe the optical properties
as high as 0.6-0.7 are needed. of materials and device structures based ogG&l ,N al-

In this letter, we report our achievement of highly con-loys with highx and hence serves as “eyes” for monitoring
ductive ALGa N alloys (x up to 0.9 by metalorganic the material qualities of these materials. The picosecond
chemical vapor deposition growth using Si-doping. Si-dopedime-resolved PL spectroscopy system consists basically of a
Al,Ga, 4N alloys (1 um thick) were grown on sapphire frequency quadrupled 100 femtosecond Ti: sapphire laser
(0001 substrates with AIN buffer layers. The growth tem- with a 76 MHz repetition rate, a monochromattr3 m), and
perature and pressure were around 1050 °C and 50 Torr, ra-streak camera with a detection capability ranging from 185
spectively. The metal organic sources used were trimethyko 800 nm and a time resolution of 2 ps.
gallium (TMGa) for Ga and trimethylaluminuniTMAI) for Table | summarizes the room temperature Hall-effect
Al. The gas sources used were blue ammonia {Nfdr N measurement results of the first batch of 25@d, _,N
and Silane (Sig) for Si doping. The flow rates used for samples (0.8x=<0.5). The general trends are that the con-
TMGa, TMAI, NHs, and SiH, were about 3, 15, 2000, and ductivity of Al,Ga, _,N alloys increases with the Si dopant
10 sccm, respectively. For Xba_,N alloys (0.3<x<0.5)  concentratior{at a fixed value ok) and decreases with(at
with a fixed Al content, the doping level was varied, from a fixed value oiNg;). More detailed results for representative
which we concluded that a critical Si dopant concentrationsamples are discussed below.

(Ngi~1.0x10¥ cm™3) is needed to convert insulating Figure 1 presents the Si dopant concentratibig) de-
Al,Ga,_,N (x>0.4) to n-type. Highly conductive pendence of the room-temperatui@00 K) PL spectra of
Al,Ga 4N (0.5=x=0.7) alloys were then obtained by fix- three AlGa _,N samples withx=0.4, 0.45, and 0.5. Be-
ing the Si dopant concentration ak3.0' cm™2 while vary-  sides the shift of the peak positiong ) toward longer

ing the growth conditions slightly. The Al contents of Si- wavelengths at higher doping levels due to the effect of the
dopedn-type ALGa 4N alloys were determined by energy band gap renormalization, we also observe a considerable
increase in the PL emission intensity with increashg.

dauthor to whom correspondence should be addressed; electronic maill N€ improvemgnt of pptical qua!ity by Si-doping has been
jiang@phys.ksu.edu observed previously in GaN epilayérs and GaN/AlGaN
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TABLE |. Hall data of of Si-doped AlGa,_,N (0.3<x=0.5) conductivity (2 cm)~* Hall mobility
(cm?/Vs)/Hall concentratior(cm™3)

X

Ng; (cm ) 0.3 0.35 0.4 0.45 0.5
0 7.32 0.47 5.%10°° 2.6x10°°
12/3.81x10"¥  23/1.29<10Y  8.6/3.81x10'®  3.1/5.30<10'®  High resistivity
5.0x 107 0.4 0.49 0.16 0.21 0.23
9.6/2.60< 107  11/2.80<10Y  4.8/2.11x 10V 4.9/2.3< 10 5.2/2.81x 10V
1.0x10'® 0.62 4.5 0.67 0.13 0.013
13/2.99<10  36/7.82x10Y  10/4.17x10Y  4.2/1.92x 10  3.1/2.66<10%
2.5x 10 15.3 21.0 15.4 4.85 2.51
61/1.57< 10"  56/2.35<10'®  60/1.60< 108 37/8.19x 10+ 169.82x10Y
5.0x 108 25.7 34.2 10.0 10.2 0.88

45/3.57x 10 62/3.45<10'®  19/3.16<10'® 28§2.28x10'® 14/3.94< 10

multiple quantum well$° The relative PL intensities for Si- concentration. Figure 3 shows the Arrhenius plots of PL
doped AlGa _,N alloys seen here increase by about oneemission intensity of AJ4:Ga; sJN epilayers with different Si
order of magnitude when the Si dopant concentration is vardopant concentrations. The solid lines in Fig. 3 are the least
ied from 0 to 510 cm~3. For example, fox=0.45, the  square fits of data with the standard equation that describes
relative PL emission intensity increases from 5 to 37 and tdhe thermal activation energy of the PL emission intenSity:
44 as the dopant concentration increases from 0 to 1
X 10 cm 2 and to 5< 10 cm™ 3. lem(T)=1o/[1+Cexd —Eo/kT)], 1)

The data shown in Table | are plotted in Fig. 2 for rep- . - o
resentative samples, showing the free electron concentratio‘rq’h(:"“:“E0 is the thermal activation energy of the PL emission

mobility, and conductivity of Si-doped ABa, ,N alloys (of intensity, which measures the effective carrier localization
three di’ﬁ‘erent Al contents¢=0.4, 0.45. an&B.)Sversus sj energy in this case. The fitted activation enerdigsare also

dopant concentrationBlg;. In resonance with the PL data indicated i.n Eig. 3. Figure @ shows temporal responses of
shown in Fig. 1, we see that the electrical properties aIscBh,e PL emission of A‘J-f‘5Ga°-5EJ\I samples Wlth. three dlﬁgrent
improve significantly with Si doping. Most importantly, Fig. Si dopant concentrations measured at their respective spec-

2 reveals that there exists a critical Si-dopant concentratioﬁlal peak positions. It clearly shows a systematic decrease of

for converting insulating AlGa, _,N (x=0.4) ton-type, and e recombination lifetime with increasirids;.
g g AlGa N ( ) yb The recombination lifetimer and activation energ¥,

the critical dopant concentration is aboux 108 cm 3. { the PL emission intensity f i
We have investigated in more detail the influence of thed! the emission intensity for AlGa,sN epilayers as

Si dopant concentration on the carrier localization propertieéur?.Ctr'lonﬁ of S;hd(;_pané IcE:or;cEntrat?]on are pltotteéj 'g ifw"ll
in Al,Ga, N alloys. This was accomplished by measuringW Ich shows thatrand, follow the same trend. Both vai-

the thermal activation energy of the PL emission in'[ensit)/Jes OftT andE, texth'b't _|n|t.|al sharp()j dfecrea_sgs tWhl\T n_thle Si
and the PL recombination lifetime as functions of Si dopantdOpan concentration is increased frag;=0 to Nsi=

S = 300K, S'i-Alea N
4+ T=300K 4,2§eV 5 N0 560_ e x=040
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FIG. 1. Room temperature PL spectra of Si-doped>al N alloys with FIG. 2. The free electron concentratiém, mobility (w), conductivity o of
three different Si dopant concentrations)Nfor (a) x=0.4, {b) x=0.45, Si-doped AlGa _,N alloys as functions of the Si dopant concentration
and(c) x=0.5. (Ng) for three different Al compositions=0.4, 0.45, and 0.5.
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FIG. 3. The Arrhenius plot of the integrated PL emission intengity, for

Si-doped A} 4Ga s\ alloy with different Si dopant concentrations. The
solid lines are the least square fits of data with &4 The fitted activation
energiesE, are also indicated in the figure for different Si dopant concen-

trations.

x 10* cm~3, followed by gradual decreases Ms; further

Nam et al.

TABLE II. Hall data of Si-doped AlGa_,N (0.3=x=<0.5): Improved re-
sults for Si dopant concentratidwig=5x 108 cm™3

X

0.5 0.6 0.65 0.7
KSU-A597  KSU-A595  KSU-A594  KSU-A599
a(Qcmt 8.3 6.7 6.7 2.2
u(cmPIVs) 33.6 30 20 21
n(cm3) 1.44x10'®  1.9x10' 2.1x10' 6.2x 10"

=1x10"®cm 3. The results shown in Fig.(8) thus cor-
roborate the electrical data presented in Table | and in Fig. 2.
Therefore, one must fill up the localization states before the
carriers could transport via extended states and reasonable
n-type conductivities could be achieved, while the critical
Si-dopant concentration needed to do this is aroNgg=1
X 10% cm™3.

Indeed, by fixing the Si dopant concentration at 5
X 10'® cm™2 while varying the growth conditions slightly,
we have achieved highly conductive, &a _ N alloys with
high Al content(x up to 0.3. The Hall data for this new
batch of samples are summarized in Table Il. Conductivity
values of 6.7 and 2.2) cm™!, respectively, have been
achieved for A} ssGay 35N and Al ;Gay 5N alloys.

In summary, we have investigated the growth, optical,
and electrical properties of Si-doped,&la; N alloys with
x up to 0.7. Our results revealed th@t the conductivity of
Si-doped AlGa _,N alloys increases with the Si dopant

increases. These results thus suggest that Si-doping reduagncentration Klg), and a sharp increase occurs around
the carrier localization energy and that a sharp reduction ilNg=1x10"8cm 2 and (ii) high conductivity can be

effective carrier localization energy occurs at arouxg
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FIG. 4. (a) Temporal responses of PL emission of Si-dopeg,&b& sJ\

alloy for three different Si dopant concentrationés(). (b) Si dopant con-
centration dependence of the recombination lifetimand thermal activa-

tion energyE, of the PL emission intensity for pLGa s\ alloys.

achieved forx up to 0.7 by Si doping. In lll-nitride visible
emitters, the typicah-type conductivity of Si-doped GaN is
around 300Q 'cm™! and thep-type conductivity of Mg-
doped GaN is around @ cm ™. We believe that the-type
conductivity values we have achieved here for@d, ,N
alloys (x up to 0.7 are sufficiently high for deep U¥~280
nm) emitter applications.
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